

📕 🗙 📕 👪 📲 👅 🎘 📗

Demonstration of ship-based carbon capture on LNG fuelled ships

Webinar, June 25th 2024, Introduction

Marco Linders, TNO, Project Coordinator (marco.linders@tno.nl)

The EverLoNG project is funded through the ACT programme (Accelerating CCS Technologies, Horizon2020 Project No 691712). Financial contributions have been made by the Ministry of Economic Affairs and Climate Policy, the Netherlands; The Federal Ministry for Economic Affairs and Climate Action, Germany; the Research Council of Norway; the Department for Business, Energy & Industrial Strategy, UK; and the U.S. Department of Energy. All funders are gratefully acknowledged.

Agenda

- 12:00 Welcome & housekeeping
- 12:05 CO₂ capture demonstration onboard SEAPEAK ARWA: Juliana Monteiro & Jasper Ros
- 12:45 Q&A
- 13:00 End

Objectives

Objective of EverLoNG is to accelerate the implementation of Ship Based Carbon Capture (SBCC) technology by:

(i) demonstrating SBCC on-board of LNG-fuelled ships;

(ii) optimising SBCC integration to the existing ship infrastructure;

(iii) facilitating the development of SBCC-based full CCUS chains;

(iv) facilitating the regulatory framework for the technology.

 \rightarrow Today we focus on the demonstration of carbon capture onboard a ship

Partners TNO CO2 SOLUTIONS **CONOSHIP** INTERNATIONAL **VDL AEC Maritime** TotalEnergies MAN Energy Solutions (MAN) JÜLICH HEEREMA Forschungszentrum akp Lloyd's Register .os Alamos BUREAU VERITAS NATIONAL LABORATORY — EST.1943 ——— SCCS **NexantECA** DNV **ANTHONY VEDER** www.everlongccus.eu | 4

Acknowledgement

• ACT funding partners

Supported by:

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag

The Research Council of Norway

Department for Energy Security & Net Zero

Ministerie van Economische Zaken en Klimaat

Ever LoNG

= X = # # * * III

WP1 Demonstration updates

Campaign onboard the Seapeak Arwa LNG carrier

Jasper Ros and Juliana Monteiro, TNO

The EverLoNG project is funded through the ACT programme (Accelerating CCS Technologies, Horizon2020 Project No 691712). Financial contributions have been made by the Ministry of Economic Affairs and Climate Policy, the Netherlands; The Federal Ministry for Economic Affairs and Climate Action, Germany; the Research Council of Norway; the Department for Business, Energy & Industrial Strategy, UK; and the U.S. Department of Energy. All funders are gratefully acknowledged.

This webinar will cover

- Overview of the demonstration campaign
- Calculated CO₂ capture rates
- Operation stability and effect of ship motion
- Exhaust gas measurements
 - NO₂ content
 - Emissions of amine and ammonia

Solvent degradation

The Seapeak Arwa

Seapeak Arwa LNG tanker, chartered by TotalEnergies

Additional information:

- Main engines:
 - 3 x Wartsila 12V50DF (4-stroke)
 - 1 x Wartsila 6L50DF (4-stroke)
- Power 39.9 MW
- Year of build: 2008
- Length: 286 m
- Beam: 43.4 m
- Draught: 12.1 m
- LNG: 163.285 m³

Carbon capture system was connected to AE2, LNG fuelled engine, running on boil-off gas

The EverLoNG prototype

- CO₂ capture with 30 wt% MEA
- CO₂ drying and liquefaction
- CO₂ storage at 15 bara, -27.7°C

The campaign

Duration: 22-10-2023 until 03-02-2024 (2475 hours)

• This campaign focused on the capture system

Solvent of choice: 30wt% aqueous solution of mono-ethanolamine (MEA) First-generation solvent, well described and understood

Data available for evaluation:

- 1. EverLoNG prototype \rightarrow All sensors
- 2. Exhaust gas \rightarrow Continuous emission data on outlet of capture system (FTIR)
- 3. Ship data \rightarrow Motion, engine load, wind speed etc.
- 4. Solvent \rightarrow Comprehensive sample analysis

Overview of operation

Mode	Time (hours)	Time (%)
Operational	1539	62.2
Offline	936	37.8

Offline: LNG offloading, engine maintenance, non-availability of operators, prototype operational issues, etc.

Engine load histogram during campaign

Solvent concentration

1st month, approx. 400 h, unit was in operation with 7% MEA concentration 2nd month, approx. 500 h unit was in operation with 17% MEA concentration Last part of onboard testing, approx. 600 h, unit was in operation with 30% MEA concentration.

The differences in concentration have effect on CO₂ capture rate, which was monitored continuously

Solvent concentration

CO₂ capture rate

Calculating the CO₂ capture rate

Two methods:

- 1. Exhaust gas side: CO_{2,in} CO_{2,out}
- 2. Solvent side: CO_{2,rich} CO_{2,lean}

CO₂ capture rate (exhaust gas side, method 1)

Assuming a stable inlet CO₂ concentration of 4.78 vol%

CO₂ capture rate (solvent side, method 2)

Summary of CO₂ capture rate calculations

	Method	CO ₂ captured, kg/h	CO ₂ captured, %
16-18 wt%	1. Gas side	6.9 - 7.9	46.8 - 54.6
	2. Liquid side	7.0 - 7.6	48.1 – 52.9

Good agreement in CO₂ mass balances Average capture rate for 17wt% MEA: ca. 50%

	Method	CO ₂ captured, kg/h	CO ₂ captured, %	Bad agreement in CO ₂
3 0 wt%	1. Gas side	12.0 – 13.9	85.1 - 88.5	mass balances Average capture rate for 30wt% MEA: ca. 85%
	2. Liquid side	7.3 – 10.9	51.8 - 65.8	

Sources of uncertainty: gas flowrate (not measured directly, but correlated from blower curves); CO₂ content in inlet gas (measured once, assumed constant); liquid flowrates (daily averages used); FTIR accuracy; liquid analysis (only 6 data points available so far, will be increased)

Operation stability and effect of ship motion

Operation stability – process parameters

Stable operation during the campaign exemplified by temperatures around heat exchanger, and liquid levels in the sumps of the absorber, desorber and water wash

- ✓ Reliable process control system
- ✓ Robust technology

Effect of motion

Ship sea movement or rolling evaluated throughout the campaign Periods with strong wind speed (up to Beaufort 10, or above 24.5 m/s)

Ship motions had **no measurable effect** on CO₂ capture rate or other process parameters

Exhaust gas measurements NO₂

NO₂ reacts with amines causing oxidative degradation (affects costs and system performance)

NO₂ reacts with secondary amines, forming nitrosamines (safety concern)

Secondary amin

Example: piperazine (present in the CESAR1 solvent)

NO₂ emissions as a function of engine load

Clear correlation between NO₂ concentration and the engine load

NO₂ emissions in the range of 100-400 mg/Nm³ (outlet of capture plant)

In land-based systems, amines are typically exposed to 2-5 mg/Nm³ of NO₂ (inlet of capture plant)

NO₂ emissions as a function of engine load

NO₂ measurements (FTIR measurement) follows the engine load (ship data) closely, showing the consistency between the ship's data and the FTIR measurements

What to do?

- Solvent choice: consider avoiding secondary amines
- Consider NOx emissions reduction (far beyond IMO requirements)
- Evaluate if cost and safety consequences can be accepted

Exhaust gas measurements MEA and ammonia

MEA emissions

MEA emissions (30 wt% MEA section)

Some engine load changes seems to cause emissions

MEA emissions (during load change)

Very high amine emissions observed during rapid load change of main engine \rightarrow indicates aerosol emissions could be present - Amine emissions are probably not acceptable in this range \rightarrow In full-scale system, temporary bypass could be a solution

Note: ambient air was sucked through the capture system when engine was offline

Ammonia emissions

(J

Ammonia emissions at design MEA concentration (30 wt%) are high relative to other campaigns, and indicate high solvent degradation rates. To be quantified further with solvent analysis

Solvent Degradation

Solvent concentration

10 10 Wt/0 = 30 Wt/0

Estimated solvent loss – comparison with literature

High degradation rate, but not off the charts

EverLoNG flue gas: O₂ concentration: 11.6 vol% NO₂ concentration: 69.2 ppm

TCM CHP flue gas: O₂ concentration: 14 vol% NO₂ concentration: 0.5 ppm

Comparison against TCM campaign

Test Center Mongstad (TCM, Norway)

One of the largest post-combustion CO_2 capture test centres in the world. Flue gas streams of up to 60,000 Sm³/h (ca. 400 times larger than EverLoNG prototype)

Campaign:

July to October 2015

30wt% MEA

3.5% CO₂

203233333		Available online at www.sciencedirect.com
	CrossMark	ScienceDirect
ELSEVIER		Energy Procedia 114 (2017) 1245 - 1262

eDirect

13th International Conference on Greenhouse Gas Control Technologies, GHGT-13, 14-18 November 2016, Lausanne, Switzerland

Degradation and Emission Results of Amine Plant Operations from MEA Testing at the CO2 Technology Centre Mongstad

Anne Kolstad Morken^{a,b,*}, Steinar Pedersen^b, Eirik Romslo Kleppe^a, Armin Wisthaler^d, Kai Vernstad^e, Øyvind Ullestad^{a,b}, Nina Enaasen Flø^a, Leila Faramarzia,b, Espen Steinseth Hamborga,b

> 4 CO2 Technology Centre Mongstad (TCM DA), 5954 Mongstad, Norway ^bStatoil ASA, PO Box 8500, 4035 Stavanger, Norway 6 Gassnova SF, Dokkvegen 10, 3920 Porsgrunn, Norway ^dUniversity of Oslo, Department of Chemistry, P.O. Box 1033 Blindern, 0315 Oslo, Norway "Sintef Materialer og Kjemi, Avd Bioteknologi, Sem Sælands vei 2, 7034 Trondheim, Norway

Abstract

In 2015, the CO₂ Technology Centre Mongstad (TCM DA), operated a test campaign using aqueous monoethanolamine (MEA) solvent at 30 wt%. The main objective was to demonstrate and document the performance of the TCM DA Amine Plant located in Mongstad, Norway. This paper will present several aspects concerning degradation of the solvent and atmospheric emissions from amine based CO2 removal processes. The work aims to; (1) quantify the amounts and compositions of the degraded solvent (2) report results from atmospheric emissions measurements of amines and amine based degradation products; and (3) present Ambient Air measurement done during a 2 month campaign.

© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) Peer-review under responsibility of the organizing committee of GHGT-13.

Keywords: Monoethanolamine, MEA, Amine, Emission, Degradation, CO2-capture

* Corresponding author. Tel.: +47 56 34 52 20 E-mail address: akmo@tcmda.com

Main degradation products - HEPO

Secondary amine group

HN OH

www.everlongccus.eu | 38

TCM data from Morken et al., 2017

Main degradation products – HEA, MEA-urea, HEI

TCM data from Morken et al., 2017

Main degradation products – acids

These products seem to accumulate at a higher rate than at TCM – indication of higher oxidative degradation

TCM data approximated from graphs presented in Morken et al., 2017

Main degradation products – nitrite and nitrate

Nitrite behaviour at 5-7wt% MEA: to be confirmed

Nitrate accumulates at lower rate than TCM

TCM data approximated from graphs presented in Morken et al., 2017

Conclusions

Successful demonstration of SBCC at TRL8, during 2475 hours. Stable operation, no measurable effect of ship motion

Average CO₂ capture rate at design solvent concentration: 79% (up to 88.5%)

• Uncertainties in calculations: carefully consider sensors needed to monitor capture rate in full-scale implementations!

Solvent degradation rate higher than most pilot operations in literature. Consequences on solvent lifetime and logistics of solvent replacement will be further evaluated within EverLoNG

 NO₂ content – point of concern (verify for other engines and ships and consider in design)

Thank you for listening

Juliana Monteiro, Juliana.Monteiro@tno.nl Jasper Ros, jasper.ros@tno.nl

info@everlongccus.eu

@everlongccus